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Received 18 July 1994 

Absbact Exact results for the bias and variance of estimators of the normallzed moments 
of gamma-distributed random variables, based on N independent samples, are derived. 
Some of the implications of these results for the analysis of K and gamma-distributed data 
are discussed: an illustrative example of such an analysis is included. These results extend 
and, in the large-N limit, reduce to the earlier perturbation Calculations of Jakeman and 
Oliver. 

1. Introduction 

Since its introduction by Jakeman and Pusey [ I ]  and, independently, by Ward [2] the 
K distribution has provided a robust and versatile model for the non-Gaussian statistical 
properties of radiation scattered from and propagated through a wide variety of random 
media 131. The representation of a K-distributed random variable as a complex Gaussian 
noise process, decorrelating on a time scale zc, with a power x which is itself a gamma- 
distributed random variable and decorrelates over a much longer time zp, has proved 
to be particularly valuable, both as a source of physical insight and as an aid to 
calculation [4]. Many of the applications of the K distribution to empirical data take 
advantage of this, its so-called compound form, to reduce the statistical analysis of the 
signal to that of its power averaged over a period z, rcccz<<7p. As zp can be of the 
order of many seconds, the number of independent samples of x obtained experimentally 
may not be very large and due attention must be paid to the spread and bias expected 
in measurements that result from this restricted number of available samples. More 
specifically, it is customary to analyse putatively gamma-distributed data sets by calcu- 
lating their estimated normalized moments (based on N samples) and comparing them 
with those derived from the probability density function (PDF) 

of the values n taken by the gamma-distributed variable x. As these estimated normal- 
ized moments are based on a finite number of samples, each displays a bias and a 
spread characterized by a variance, both of which depend on N .  Previous workers [5 ,6]  
have derived expressions for these biases and variances based on an expansion in powers 
of N - ' ,  typically neglecting all terms O(N-') and smaller. In this paper we derive exact. 
closed-form expressions for the mean, variance and expectation value of the inth power 
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of the estimator of the 11th normalized moment based on N independent samples 
{ x i )  of the gamma-distributed random variable x. These results form the basis of a 
discussion of the behaviour of the normalized moment plots, frequently used to display 
the results of the statistical analysis of sea clutter and other K-distributed signals [4], 
as a function of the number of samples. Finally we present an analysis of some typical 
microwave scattering data; the results we have derived allow us to accommodate their 
extremely non-Gaussian statistical behaviour within the familiar context of the gam- 
ma/K distribution model. This is done simply by taking account of the finite number 
of samples available in the measurements. 

2. Evaluation of the bias and variance of the estimator of the nth normalized moment 

Given the set { x i }  of N independent samples of a random variable, an estimator of the 
nth moment of its distribution is given by 

As is well known [7], in the case of the gamma distribution ( I ) ,  this provides an 
unbiased estimate of 

r( v + n) 
r( v)b" 

=E- (3) 

i.e. (9)  = {x"). However, the corresponding estimator for the normalized moment is 
biased so that 

The variance of the estimator 

(,e)=' (4) 

provides a quantitative measure of the expected spread in its observed value. We will 
tiow show how the bias and variance of the estimator of the nth moment can be 
expressed in a relatively simple closed form and, for completeness, evaluate the expecta- 
tion value of its ruth power: 

In the conventional analysis of this problem [5,6] the reciprocal of the estimator 2 
is expanded about the value (x)-l in powers of N - ' ,  We can avoid many of the 
difficulties inherent in this approach by introducing an integral representation of inverse 
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powers of .C: 

In  this way we are able to obtain results in closed form (and not as a series in W ' )  
and reduce the combinatorial problems involved to a level where the evaluation of fn,," 
is tractable. As the N samples {x,} are independent we may write their joint PDF as 
follows : 

Thus, if we wish to evaluate the expectation value of the estimator of the nth normalized 
moment we have 

- N"bYN r ( v + n )  /omdS J-"-' 

(n-I)! r ( v )  (S+ b)"N+"' 

The final integral over s can be evaluated in terms of gamma functions using the 
standard result 

to give 

v ( v + l ) .  .. (v+n-I) 
n- 1 

VI' 1+- . . .  I+-) ( dv) ( N v  

1".l = 

If this result is expanded to lowest order in N-l we find that 
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This agrees with the result obtained from the series expansion analyses of Jakeman [5] 
and Oliver [6]. We now evaluate I,,,2 by noting that 

so that we obtain, much as before, 

Thus the variance of the estimator of the nth normalized moment is given by 

L . 2 -  (L.1 1'. (12) 
This can be expanded to lowest order in N - '  as 

this agrees with the series expansion result given in [6]. 
The methods we have just described can be applied to the evaluation of I,,,,", the 

only difficulty encountered coming from the combinatorix of the term arising from 
(x")'". 

Thus we have 

x[[~dxx'-'exp(-(b+s)x) J 

exp(-(b + s)x)  

where {aj} is any set of integers satisfying the conditions E;uj=r and X,jaj=m and 
( m ;  { a j } )  is the number of ways of partitioning m different objects into aw subsets, each 
containing k objects, for k =  1,2, .  . . , m. Noting that O!= 1, (m; {uJ} )  may be written 
as 
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The integrals over x and scan now be expressed in terms of gamma functions as before 
to give as the final result: 

A list of unrestricted partitions {aj] for inGI0  and the corresponding values of 
( i n ;  { a j } )  is given in 181, and allows I,.,,, to be evaluated explicitly for any reasonable 
value of in .  The following special case values of In,," are of particular interest: 

N =  1 I",m = 1 

and 

ln,,2r+Nz+ " as v+O. (15) 
The first of these provides us with a check on our analysis as, when N =  I ,  ?'/(a)"= 1 
and I,,,, should take the value unity. When v+O, the normalized moments tend to large 
but finite values which depend on the finite number of samples taken; this should be 
contrasted with the unbiased result (x">'"/(x)'"+m as v+O. 

3. Numerical results and discussion 

As i s  discussed in [4], a common method of assessing the applicability of the gamma 
distribution as a model of sets of data is to plot the estimators of the third, fourth and, 
occasionally, higher-order normalized moments of the data sets as a function of their 
estimated normalized variances. For convenience, these results are best presented in a 
log-log format. The availability of only finite sets of data will induce a bias and spread 
(described by the results we have just derived) in these plots which will not coincide 
with the universal curves based on 

These effects of finite sample size are evident in the plots of 13.1 and I,,,l against 12.! for 
N =  50, 100,500 and 1000 shown in figures I and 2. For a given value of N ,  I,,,,, cannot 
exceed the value given by (15), so that the curves terminate at end points (shown in 
figures 1 and 2 for the cases N = 5 0 ,  100 and 500). This is in contrast to the N + c o  
curves based on (16), which tend to infinity as v-10. These are shown as dashed lines. 

In figure 3 we show a plot of 

&&I 

13: I 
as a function of for several values of N, again in a log-log format. The corresponding 
plots for the estimator of the fourth normalized moment are shown in figure 4. We 
note that, in some circumstances, the standard deviation of the distribution of the 
estimators exceed the value of its mean which, as the estimators are necessarily positive, 
is symptomatic o f  the distribution having a very long 'tail'. Tapster el ai [9] discuss the 
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Figure I. PloU of I,,,  versus 12, for N=50, 100, 500. IOW) and the unbiased (N-m) limit. 
The end points of the N=50, N=IOO and N=500 curves are also shown. 

109 

IO’ 

I 0’ 

IO’ 

1 4 1  
Unbiased curve 

I -=50 

Figure 2. Plots of Id, ,  versus h,, for N=50, 100, 500. 1000 and the unbiased (N-m) limit. 
The end points of the N=50, N= 100 and N =  500 curves are also shown. 

consequences of this feature for the experimental determination of moments from finite 
sets of data; the detailed results we present here allow an immediate extension of their 
analysis of un-normalized (and unbiased) moments to the estimation of the biased 
normalized moments. Finally we note that, in accordance with the behaviour of the 
estimators (see (15)) as v-0, the variance of the estimator of a normalized moment 
tends to zero in this limit, illustrating a dramatic effect of finite sample size. 

In our analysis we have assumed that our N samples are independent. Effects of 
correlation among the samples are difficult to analyse in detail, though a parametrization 
in terms of an effective number N<R of independent samples (where N C a < N )  provides 
a useful basis for qualitative discussion [ 5 , 6 ] .  The incorporation of such an Ne# into 
the results of the present analysis would be equally valid and entirely straightforward. 
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FigUrC3. Plots of l , ,d~l~ . t )*- l  versus J:., for N=50, 100, 500 and 1000, 

Figure 4. Plots of J n , J ( J 4 . 1 ) 2 -  I versus ]>,I for N=50, IW. 500 and 1000 

The results that we have presented thus far are essentially formal; the widespread 
use of the gamma and K distributions to model the statistical variation of scattering 
cross section and the corresponding fluctuations in the scattered field provides both a 
motivation for their derivation and a source of data with which they may be validated. 
To conclude our discussion we will present analyses of a set of data that illustrate these 
effects of finite sample number. 

Jakeman [9]  has presented an attractive phenomenology that may underpin the 
widespread applicability of these models. He considers the coherent illumination of a 
fluctuating population of scatterers which tend to bunch together so that the scattered 
light no longer has the Gaussian statistics characteristic of speckle. This bunching of 
the scatterers is manifest in the gamma distribution of their effective scattering cross 
section. ‘Spiky’ data, which sporadically attain very large values, are modelled by distri- 
butions with small values of v ;  in Jakeman’s model the spikescorrespond to the presence 
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of bunches of scatterers appearing occasionally in an otherwise unoccupied scattering 
volume. We see from the series expansion result ( I O )  that finite sample effects are most 
pronounced when the product Nv is small and so should be evident in the analysis of 
strongly non-Gaussian spiky data. Such data are obtained when the illuminated area 
containing fluctuating scatterers is very small. In  optical experiments this is achieved 
by focusing down a laser beam onto a suitable random medium; a corresponding 
situation arises in microwave scattering as a result of the range-gating of returns in a 
high-resolution radar system. The practicalities of these measurements need not concern 
us here; we should note, however, that it is in the areas of radar clutter and optical 
scattering and propagation that the gamma/K distribution model has proved to be 
most useful [3]. 

As our example of the application of our results we consider the statistics of the 
radar scattering cross sections, measured in individual range cells along the length of 
a vessel, subject to the aleatoric influence of the moving sea surface. In a high-resolution 
radar system the spatial extent of the vessel will occupy many range cells, each of which 
will contain relatively few scattering centres whose positions and orientations fluctuate. 
The cross sections associated with different range cells are found to have profoundly 
non-Gaussian statistical properties, for which the gamma/K distribution may provide 
a model. To test the applicability of this model, estimators of the third and fourth 
normalized moments of the measured cross section can be plotted as a function of that 
of its normalized variance. For each range cell a limited number (in our case N a 2 0 0 )  
of sets of samples of the received back scatter are collected and N averaged effective 
cross sections are measured. These then give us estimators of the required normalized 
moments. In this way each range cell contributes a single point to each of the plots 
shown in figure 5. We see that the broken curves derived from the unbiased (infinite 
N) normalized moments do not describe the data in the strongly non-Gaussian regime. 
The unbroken curves derived from the biased results (9) and ( I  I )  are also shown. 
These describe the deviation of the behaviour of the estimators of the third and fourth 
normalized moments as a function of normalized variance from the unbiased curves 
very well. It is particularly noteworthy that, for relatively small values of the normalized 
variance, the estimators lie on both sides of the biased curve while, for moderate values 
of the normalized variance, the estimators tend to lie below the biased curve. This can 
be understood in terms of the variances of these estimators shown in figures 3 and 4. 
When the corresponding standard deviation is smaller than the mean, a scattea on both 
sides of the biased curve is expected. As is discussed by Tapster et a/ [io], the third 
and fourth normalized moments are necessarily positive and yet, for intermediate values 
of the normalized variance, have distributions whose means are significantly less than 
their standard deviations. This is indicative of these distributions having very long 
‘tails’. Consequently a given measurement of one of these estimators tends to lie below 
even the biased curve. In the extreme non-Gaussian limit we see from figures 3 and 4 
(and indeed from (15)) that the variances of the distributions of these estimators 
decrease, so that the observed convergence of the experimental data to the biased curves 
as v tends to zero is to be expected. It is perhaps worthy of note that the series expansion 
results of Jakeman and Oliver [S, 61 are quite inadequate to describe these results and 
predict negative values for the necessarily positive normalized moments in the extreme 
non-Gaussian regime. All in all, our results give an excellent description of the non- 
Gaussian fluctuations in effective cross section, merely by allowing for the effects of 
finite sample number, which, as N v  is of the order of unity or less, can be very significant. 
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Figure 5. The third and fourth normalized moments of averaged radar cross section. 
presented as a function of the normalized variance. The circles and crosscs denote measured 
third and fourth moments respectively; the unbiased curves are shown as broken lines while 
the biased curves, corrected for the effect of finite sample number, are shown as full lines 

Thus we have been able to accommodate these seemingly exceptional data within the 
familiar phenomenological framework of the K-distribution model. 

To conclude, we re-emphasize that the results presented here have a much wider 
range of applicability than those given in [S, 61, which depend on Nv>> I to be valid. 
Consequently they will be of particular practical significance (in conjunction with the 
analysis ofTapster el al [ IO])  when the gamma distribution is used, with v-0,  to model 
very spiky data. We have presented an example that both demonstrates this and extends 
the application of the gamma/K distribution model. The gamma distribution is also 
used (occasionally as an approximation to less tractable distributions [ 1 I]) in other 
areas [12,13], where our results may be of value in data analyses similar to those we 
have discussed here. 
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